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EXTENDED ABSTRACT

In recent years, the demand for fast and realistic simulations of flexible slender structures such as cables and hoses has increased
due to their widespread use in the automotive industry. For such slender flexible structures, Cosserat rod theory provides an
efficient and geometrically exact modeling framework [1]. A linear constitutive behavior, namely a linear moment-curvature
relationship, has often been used in the Cosserat rod theory for the study of the bending behavior of beams. This is sufficient for
many applications, however, for more complex structures, nonlinear elastic behavior plays an important role [2]. In our recent
work [3], we presented an iterative method for the forward simulation of the nonlinear elastic bending behavior of cables and
formulated the corresponding inverse problem, i.e. we proposed a data-based method to identify the state-dependent bending
stiffness characteristic for given measurement data. In this contribution, we introduce an alternative method to identify the
bending stiffness characteristics of cables, based on the equilibrium equations for rods. Also, we discuss enhancements of the
inverse problem, where pre-curvature is considered as additional optimization variable.

Figure 1: Top-view of MeSOMICS [4] bending experiment.
The left clamping point is displaced step-wise towards the right
clamping point, resulting in different bending deformations
(cf. Fig. 2).
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Figure 2: Generated bending configurations during the Me-
SOMICS bending experiment by applying displacements d, 2d,
3d to the left clamping, where d is the cable diameter. On the
right clamping, the resulting reaction force f is measured.

In absence of external body forces and moments acting on the Cosserat rod in two-dimensional space, the equilibrium equations
are given by ∂sf= 0 and ∂sm+∂sϕϕϕ×f(s)= 0, where f(s)= ( f x(s), f y(s),0)T ∈R3 is the force vector, m(s)= (0,0,m(s))T ∈R3 is
the moment vector, ϕϕϕ(s)= (x(s),y(s),0)T ∈R3 is the centreline and s ∈ [0,L] represents the arc length parameter. The equilibrium
equations imply that their integrals are supposed to be constant along the rod, independent of the constitutive behavior [5], and
we find f(s) = f and m(s)+ϕϕϕ(s)× f =MMM , where ϕϕϕ(s)× f and m(s) only have a non-vanishing z-component such that we write
m(s)+ x(s) · f y − y(s) · f x = M .

More specifically, for our bending experiment [4] (see Fig. 1 and Fig. 2) with moment-free boundary conditions at both clamping
points m(0) = 0, m(L) = 0, also leading to vanishing force in y-direction, i.e. f y = 0, and setting the y-coordinate at the left
clamping point to y(0) = 0, we obtain M = 0. Thus, the bending moment at arc length s is given by m(s) = y(s) · f x. Moreover,
the local curvature κ(s) can be calculated as κ(s) = dθ

ds , where θ = arctan( dy
dx ). Further, the derivative of the moment with respect

to the curvature

dm(κ)

dκ

∣∣∣∣
κ=κ(s)

=: fEI (κ(s)) (1)

represents the state-dependent bending stiffness for curvature κ(s). Since our bending experiment provides an interval of cur-
vatures (in each static configuration the curvature vanishes at the boundaries and reaches its maximum in the middle), we can
determine the state-dependent bending stiffness characteristic from the graph (κ(s), fEI (κ(s))). Moreover, we consider several
configurations as can be seen in Fig. 2 and, thus, get several graphs which can be combined.
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Figure 3: Used reference characteristic fEI(κ) and the identi-
fied bending stiffness characteristic by using virtual data gener-
ated with the reference characteristic.
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Figure 4: Identified bending stiffness characteristic using
experimentally measured data. The solid lines show the
(κ(s), fEI(κ(s))) graphs identified from (1). The dashed lines
show results from the inverse problem.

First, we investigate the above described method on virtual data. With a known reference bending stiffness characteristic fEI(κ),
the bending line and the reaction force are simulated by the iterative method presented in [3]. By using (1), the obtained bending
stiffness characteristic agrees well with the reference characteristic, as can be seen in Fig. 3.

Second, the method is applied to experimentally measured data, where Fig. 2 shows the bending lines of all three investigated
configurations. From these bending lines and the measured forces, the (κ(s), fEI(κ(s))) graphs are identified for all of the three
configurations, which show good consistency (solid lines in Fig. 4).

Moreover, Fig. 4 is complemented by solutions of the inverse problem: on the one hand (black dashed line), with a priori defined
constant pre-curvature K0 = 0 and, on the other hand (orange dashed line), with constant pre-curvature as optimization variable
(identified constant pre-curvature K0 ≈ 3m−1). As can be seen, solving the inverse problem with a priori defined pre-curvature
K0 = 0 leads to an unphysical characteristic with negative bending stiffness for small curvatures, while including the pre-curvature
as optimization variable provides a more realistic result.

However, although both approaches – using (1) to find (κ(s), fEI(κ(s))) graphs and the inverse problem – provide bending
stiffness characteristics in the same order of magnitude, they obviously show qualitatively different behavior. A more detailed
investigation comparing both approaches is ongoing research. One aspect is to estimate the error in the computation of κ(s) from
optically detected bending lines ϕ(s) = (x(s),y(s))T . Further, we aim to investigate the influence of pre-curvature K0 also on the
(κ(s), fEI(κ(s))) graphs.

Summarizing, in this contribution, we continue our work on simulating nonlinear elastic bending behavior of real cables. While
an efficient forward simulation already could be presented in our previous work [3], now we focus our work on a robust method
to identify realistic stiffness characteristics for the nonlinear elastic bending behavior of cables, which is essential for reliable
simulations.
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